670 research outputs found

    Cryo-electron microscopy of viruses

    Get PDF
    Thin vitrified layers of unfixed, unstained and unsupported virus suspensions can be prepared for observation by cryo-electron microscopy in easily controlled conditions. The viral particles appear free from the kind of damage caused by dehydration, freezing or adsorption to a support that is encountered in preparing biological samples for conventional electron microscopy. Cryo-electron microscopy of vitrified specimens offers possibilities for high resolution observations that compare favourably with any other electron microscopical method

    A Modern Mode of Activation for Nucleic Acid Enzymes

    Get PDF
    Through evolution, enzymes have developed subtle modes of activation in order to ensure the sufficiently high substrate specificity required by modern cellular metabolism. One of these modes is the use of a target-dependent module (i.e. a docking domain) such as those found in signalling kinases. Upon the binding of the target to a docking domain, the substrate is positioned within the catalytic site. The prodomain acts as a target-dependent module switching the kinase from an off state to an on state. As compared to the allosteric mode of activation, there is no need for the presence of a third partner. None of the ribozymes discovered to date have such a mode of activation, nor does any other known RNA. Starting from a specific on/off adaptor for the hepatitis delta virus ribozyme, that differs but has a mechanism reminiscent of this signalling kinase, we have adapted this mode of activation, using the techniques of molecular engineering, to both catalytic RNAs and DNAs exhibiting various activities. Specifically, we adapted three cleaving ribozymes (hepatitis delta virus, hammerhead and hairpin ribozymes), a cleaving 10-23 deoxyribozyme, a ligating hairpin ribozyme and an artificially selected capping ribozyme. In each case, there was a significant gain in terms of substrate specificity. Even if this mode of control is unreported for natural catalytic nucleic acids, its use needs not be limited to proteinous enzymes. We suggest that the complexity of the modern cellular metabolism might have been an important selective pressure in this evolutionary process

    The Crystal Structure of the Human Co-Chaperone P58IPK

    Get PDF
    P58IPK is one of the endoplasmic reticulum- (ER-) localised DnaJ (ERdj) proteins which interact with the chaperone BiP, the mammalian ER ortholog of Hsp70, and are thought to contribute to the specificity and regulation of its diverse functions. P58IPK, expression of which is upregulated in response to ER stress, has been suggested to act as a co-chaperone, binding un- or misfolded proteins and delivering them to BiP. In order to give further insights into the functions of P58IPK, and the regulation of BiP by ERdj proteins, we have determined the crystal structure of human P58IPK to 3.0 Å resolution using a combination of molecular replacement and single wavelength anomalous diffraction. The structure shows the human P58IPK monomer to have a very elongated overall shape. In addition to the conserved J domain, P58IPK contains nine N-terminal tetratricopeptide repeat motifs, divided into three subdomains of three motifs each. The J domain is attached to the C-terminal end via a flexible linker, and the structure shows the conserved Hsp70-binding histidine-proline-aspartate (HPD) motif to be situated on the very edge of the elongated protein, 100 Å from the putative binding site for unfolded protein substrates. The residues that comprise the surface surrounding the HPD motif are highly conserved in P58IPK from other organisms but more varied between the human ERdj proteins, supporting the view that their regulation of different BiP functions is facilitated by differences in BiP-binding

    HTLV-1-Associated Adult T Cell Leukemia Lymphoma Presenting as Granulomatous Pneumocystis Jiroveci Pneumonia (PJP) and Hypercalcemia

    Get PDF
    BACKGROUND: Since the initial description of human T cell lymphotropic virus (HTLV-1), clusters of this infection have been detected globally. Unlike HIV infection, most patients infected with HTLV-1 remain asymptomatic throughout their lifetime. CASE REPORT: We report the case of a 39-year-old Afro-Caribbean man with HTLV-1 infection presenting as hypercalcemia and granulomatous pneumocystis jiroveci pneumonia. RESULTS: Interestingly, the hypercalcemia presented with normal parathyroid hormone–related protein and low 1,25 dihydroxyvitamin D levels, and the presence of pneumocystis jiroveci in the granulomas was diagnosed with transbronchial biopsy taken during bronchoscopy. HTLV-1-associated adult T cell leukemia lymphoma (ATLL) was diagnosed in this patient by bone marrow and lymph node biopsy. CONCLUSION: Increased bone resorption, likely cytokine-mediated, is the most likely mechanism of hypercalcemia in this patient. This is believed to be the first description of this type of reaction to pneumocystis jiroveci in a HTLV-1-infected ATLL patient

    Maternal characteristics associated with the dietary intake of nitrates, nitrites, and nitrosamines in women of child-bearing age: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple <it>N</it>-nitroso compounds have been observed in animal studies to be both mutagenic and teratogenic. Human exposure to <it>N</it>-nitroso compounds and their precursors, nitrates and nitrites, can occur through exogenous sources, such as diet, drinking water, occupation, or environmental exposures, and through endogenous exposures resulting from the formation of <it>N</it>-nitroso compounds in the body. Very little information is available on intake of nitrates, nitrites, and nitrosamines and factors related to increased consumption of these compounds.</p> <p>Methods</p> <p>Using survey and dietary intake information from control women (with deliveries of live births without major congenital malformations during 1997-2004) who participated in the National Birth Defects Prevention Study (NBDPS), we examined the relation between various maternal characteristics and intake of nitrates, nitrites, and nitrosamines from dietary sources. Estimated intake of these compounds was obtained from the Willet Food Frequency Questionnaire as adapted for the NBDPS. Multinomial logistic regression models were used to estimate odds ratios and 95% confidence intervals for the consumption of these compounds by self-reported race/ethnicity and other maternal characteristics.</p> <p>Results</p> <p>Median intake per day for nitrates, nitrites, total nitrites (nitrites + 5% nitrates), and nitrosamines was estimated at 40.48 mg, 1.53 mg, 3.69 mg, and 0.472 μg respectively. With the lowest quartile of intake as the referent category and controlling for daily caloric intake, factors predicting intake of these compounds included maternal race/ethnicity, education, body mass index, household income, area of residence, folate intake, and percent of daily calories from dietary fat. Non-Hispanic White participants were less likely to consume nitrates, nitrites, and total nitrites per day, but more likely to consume dietary nitrosamines than other participants that participated in the NBDPS. Primary food sources of these compounds also varied by maternal race/ethnicity.</p> <p>Conclusions</p> <p>Results of this study indicate that intake of nitrates, nitrites, and nitrosamines vary considerably by race/ethnicity, education, body mass index, and other characteristics. Further research is needed regarding how consumption of foods high in nitrosamines and <it>N</it>-nitroso precursors might relate to risk of adverse pregnancy outcomes and chronic diseases.</p

    The Formation of Collective Silk Balls in the Spider Mite Tetranychus urticae Koch

    Get PDF
    Tetranychus urticae is a phytophagous mite that forms colonies of several thousand individuals. These mites construct a common web to protect the colony. When plants become overcrowded and food resources become scarce, individuals gather at the plant apex to form a ball composed of mites and their silk threads. This ball is a structure facilitating group dispersal by wind or animal transport. Until now, no quantitative study had been done on this collective form of migration. This is the first attempt to understand the mechanisms that underlie the emergence and growth of the ball. We studied this collective behaviour under laboratory conditions on standardized infested plants. Our results show that the collective displacement and the formation of balls result from a recruitment process: by depositing silk threads on their way up to the plant apex, mites favour and amplify the recruitment toward the balls. A critical threshold (quorum response) in the cumulative flow of mites must be reached to observe the emergence of a ball. At the beginning of the balls formation, mites form an aggregate. After 24 hours, the aggregated mites are trapped inside the silk balls by the complex network of silk threads and finally die, except for recently arrived individuals. The balls are mainly composed of immature stages. Our study reconstructs the key events that lead to the formation of silk balls. They suggest that the interplay between mites' density, plant morphology and plant density lead to different modes of dispersions (individual or collective) and under what conditions populations might adopt a collective strategy rather than one that is individually oriented. Moreover, our results lead to discuss two aspects of the cooperation and altruism: the importance of Allee effects during colonization of new plants and the importance of the size of a founding group

    Self-Assemblage and Quorum in the Earthworm Eisenia fetida (Oligochaete, Lumbricidae)

    Get PDF
    Despite their ubiquity and ecological significance in temperate ecosystems, the behavioural ecology of earthworms is not well described. This study examines the mechanisms that govern aggregation behaviour specially the tendency of individuals to leave or join groups in the compost earthworm Eisenia fetida, a species with considerable economic importance, especially in waste management applications. Through behavioural assays combined with mathematical modelling, we provide the first evidence of self-assembled social structures in earthworms and describe key mechanisms involved in cluster formation. We found that the probability of an individual joining a group increased with group size, while the probability of leaving decreased. Moreover, attraction to groups located at a distance was observed, suggesting a role for volatile cues in cluster formation. The size of earthworm clusters appears to be a key factor determining the stability of the group. These findings enhance our understanding of intra-specific interactions in earthworms and have potential implications for extraction and collection of earthworms in vermicomposting processes
    corecore